Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]\frac{x^2}{25} + \frac{y^2}{16} = 1[/tex]
Step-by-step explanation:
Great, so the question already tells you that you're using the standard form of an ellipse. All you gotta do is apply your knowledge of the characteristics of an ellipse graph.
The standard form of an ellipse is:
[tex]1 = \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}[/tex]
[tex]h[/tex] and [tex]k[/tex] are the offset, or the coordinates of the center of the ellipse. The center of the ellipse will always be on (h,k). Now because the question says the center is (0,0), we can make h and k equal to 0 in the equation giving:
[tex]1 = \frac{x^2}{a^2} + \frac{y^2}{b^2}[/tex].
Now, the height of the ellipse will always be equal to 2a. The width will be equal to 2b.
Since we are told what the height and width should be, we can find the a and b values quite easily using algebra.
So first, height:
[tex]10 = 2a\\5 = a[/tex]
Now width:
[tex]8 = 2b\\4 = b[/tex]
Subbing for a and b in the equation give you:
[tex]1 = \frac{x^2}{5^2} + \frac{y^2}{4^2}\\=\\1 = \frac{x^2}{25} + \frac{y^2}{16}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.