Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The two functions are inverses.
Step-by-step explanation:
Recall what an inverse is:
When you inverse an equation, like y = 2x for example, you switch, the y and x values. So you'd now have x = 2y, then x/2 = y.
In a case like that we'd say that, y = 2x, and y = x/2 are inverses of each other.
Now looking at your question, all we'd need to do is take the inverse of 1, and see if it matches up with the other one. So pick a function. I'll choose g(x) and I'll inverse it.
[tex]g(x) = y = 2x + 6[/tex]
get rid of the g(x), as it doesn't help you anymore.
[tex]y = 2x + 6[/tex]
then, switch the x and the y.
[tex]x = 2y + 6[/tex]
then isolate for y.
[tex]x - 6 = 2y[/tex]
[tex]\frac{x-6}{2} = y[/tex]
Now let's see, does [tex]f(x) = \frac{1}{2}x - 3[/tex] equal [tex]\frac{x-6}{2}[/tex] ? Well actually yes.
We just didn't simplify all the way.
[tex]\frac{x-6}{2} = y\\[/tex]
divide each term by 2
[tex]\frac{x}{2} - 3 = y[/tex]
[tex]\frac{x}{2}[/tex] can be written as [tex]\frac{1}{2}x[/tex] so we get
[tex]\frac{1}{2}x - 3[/tex] which is equal to f(x)
Therefore the 2 functions are inverses.
Q.E.D
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.