At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is the distance between (-2, 4) and (5, 4) on a coordinate grid?

Sagot :

Answer:

7 units

Step-by-step explanation:

(Background info, skip if not interested or needed for you)

The equation for distance on a cartesian plane coordinate system is based off the pythagorean theorem.

[tex]a^2 + b^2 = c^2[/tex]

a and b being sides of a right triangle, c being the hypotenuse.

When we are solving for distance we are solving for c essentially.

[tex]c[/tex] = [tex]\sqrt{a^2 + b^2}[/tex]

Because a and b are side lengths of the right triangle, we need to find a way to find that in terms of coordinates. So here we might say that a is equal to the horizontal distance between the 2 points or Δx, and we would say that b is the vertical distance between the 2 points Δy.

(solutions)

So essentially distance is:

[tex]d = \sqrt{(x_2 - x_1)^2+ (y_2-y_1)^2 }[/tex]

Now we just use the values given to us, and sub in the x and y values respectively.

(-2,4) [tex]x_1 = -2, y_1 = 4[/tex]

(5,4)[tex]x_2 = 5, y_2 = 4[/tex]

plug these values in:

[tex]d = \sqrt{((5) - (-2))^2+ (4-4)^2 } = \sqrt{(7)^2+ (0)^2 } = \sqrt{7^2 } = 7[/tex]

Therefore the distance is 7 units.

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.