Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]log_4(\frac{1}{4^5}) = -5[/tex]
Step-by-step explanation:
[tex]log_b(a) = c[/tex] ↔ [tex]b^c = a[/tex]
You are given [tex]b[/tex] = 4
You re also given [tex]c[/tex] = -5
To find a, use the exponential form:
[tex]b^c = a[/tex]
[tex]= (4)^{-5} = \frac{1}{4^5} = a[/tex]
Then you can convert into a logarithm.
[tex]log_4(\frac{1}{4^5}) = -5[/tex]
Answer:
There are multiple ways of writing this:
[tex]\sf -5log_4(4)=log_4(4^{-5})=log_4\left(\dfrac{1}{4^5}\right)=log_4\left(\dfrac{1}{1024}\right)[/tex]
Step-by-step explanation:
Log rule: [tex]\sf log_a(a)=1[/tex]
[tex]\sf \implies log_4(4)=1[/tex]
[tex]\sf \implies -5log_4(4)=-5[/tex]
Log rule: [tex]\sf c \cdot log_ab=log_a(b^c)[/tex]
[tex]\sf \implies -5log_4(4)=log_4(4^{-5})[/tex]
[tex]\sf = log_4\left(\dfrac{1}{4^5}\right)[/tex]
[tex]\sf = log_4\left(\dfrac{1}{1024}\right)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.