Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Write the equation of the line perpendicular to y=5/6x+7/6 that passes through the point (-8,9) .

Sagot :

keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above

[tex]y = \stackrel{\stackrel{m}{\downarrow }}{\cfrac{5}{6}}x+\cfrac{7}{6}\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]

so we can say that

[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{\cfrac{5}{6}} ~\hfill \stackrel{reciprocal}{\cfrac{6}{5}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{6}{5}}}[/tex]

so we're really looking for the equation of a line with a slope of -6/5 and that passes through (-8 , 9)

[tex](\stackrel{x_1}{-8}~,~\stackrel{y_1}{9})\qquad\qquad \stackrel{slope}{m}\implies -\cfrac{6}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{9}=\stackrel{m}{-\cfrac{6}{5}}(x-\stackrel{x_1}{(-8)})\implies y-9=-\cfrac{6}{5}(x+8) \\\\\\ y-9=-\cfrac{6}{5}x-\cfrac{48}{5}\implies y=-\cfrac{6}{5}x-\cfrac{48}{5}+9\implies y=-\cfrac{6}{5}x-\cfrac{3}{5}[/tex]