Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

A circle has (-1, -1) and (-25,-11) as endpoints of a diameter.
Find the center and radius of the circle.
Write the standard equation of the circle.


Sagot :

well, since we know the diameter points, half-way in between is the center

[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{-25}~,~\stackrel{y_2}{-11}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -25 -1}{2}~~~ ,~~~ \cfrac{ -11 -1}{2} \right)\implies \left(\cfrac{-26}{2}~~,~~\cfrac{-12}{2} \right)\implies (-13~~,~~-6)[/tex]

and its radius will be half the length of the diameter

[tex]~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{-25}~,~\stackrel{y_2}{-11})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[-25 - (-1)]^2 + [-11 - (-1)]^2}\implies d=\sqrt{(-25+1)^2+(-11+1)^2} \\\\\\ d=\sqrt{(-24)^2+(-10)^2}\implies d=\sqrt{676}\implies d=26~\hfill \stackrel{half~that}{r=13}[/tex]

[tex]\rule{34em}{0.25pt}\\\\ \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-13}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{13}{ r} \\\\[-0.35em] ~\dotfill\\\\\ [x-(-13)]^2~~ + ~~[y-(-6)]^2~~ = ~~13^2\implies (x+13)^2~~ + ~~(y+6)^2~~ = ~~169[/tex]

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.