Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
well, since we know the diameter points, half-way in between is the center
[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{-25}~,~\stackrel{y_2}{-11}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -25 -1}{2}~~~ ,~~~ \cfrac{ -11 -1}{2} \right)\implies \left(\cfrac{-26}{2}~~,~~\cfrac{-12}{2} \right)\implies (-13~~,~~-6)[/tex]
and its radius will be half the length of the diameter
[tex]~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{-25}~,~\stackrel{y_2}{-11})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[-25 - (-1)]^2 + [-11 - (-1)]^2}\implies d=\sqrt{(-25+1)^2+(-11+1)^2} \\\\\\ d=\sqrt{(-24)^2+(-10)^2}\implies d=\sqrt{676}\implies d=26~\hfill \stackrel{half~that}{r=13}[/tex]
[tex]\rule{34em}{0.25pt}\\\\ \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-13}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{13}{ r} \\\\[-0.35em] ~\dotfill\\\\\ [x-(-13)]^2~~ + ~~[y-(-6)]^2~~ = ~~13^2\implies (x+13)^2~~ + ~~(y+6)^2~~ = ~~169[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.