Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]m\angle L = 100^{\circ}[/tex].
[tex]m\angle J = 80^{\circ}[/tex].
[tex]m\angle M = 100^{\circ}[/tex].
Step-by-step explanation:
Since segment [tex]JM[/tex] is parallel to segment [tex]KL[/tex], quadrilateral [tex]JKLM[/tex] is a trapezoid.
Segment [tex]JK[/tex] and segment [tex]LM[/tex] (the two legs of this trapezoid) are equal in length. Hence, trapezoid [tex]JKLM[/tex] would be an isoscele trapezoid. By symmetry, [tex]m\angle L = m \angle K = 100^{\circ}[/tex].
Line [tex]JK[/tex] traverses line [tex]JM[/tex] and line [tex]KL[/tex]. [tex]\angle J[/tex] and [tex]\angle K[/tex] are a pair of consecutive interior angles as they are both between [tex]JM\![/tex] and [tex]KL\![/tex] and are on the same side of the traversal, [tex]JK\![/tex].
Since line [tex]JM[/tex] is parallel to line [tex]KL[/tex], any pair of consecutive interior angles between these two lines would add up to [tex]180^{\circ}[/tex] (supplementary angles.) Thus, [tex]\angle J[/tex] and [tex]\angle K[/tex] are supplementary angles; [tex]m\angle J + m\angle K = 180^{\circ}[/tex].
Since [tex]m\angle K = 100^{\circ}[/tex], [tex]m\angle J = 180^{\circ} - m\angle K = 180^{\circ} - 100^{\circ} = 80^{\circ}[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.