dennisj1
Answered

Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

An electron with an initial speed of 700,000 m/s is brought to rest by an electric field. What was the potential difference that stopped the electron? What was the initial kinetic energy of the electron, in electron volts?

Sagot :

Answer:

See below.

Explanation:

According to the question, we know that,

work done is given by,  [tex]W=qV[/tex]

and change in kinetic energy is, Δ [tex]KE=W=1=1/2[mv^{2} ][/tex]

therefore equating both the equations we get,

[tex]qV=1/2[mv^{2} ][/tex] ⇒ [tex]V=\frac{mv^{2} }{2q}[/tex]

m= mass of electron =  [tex]9.1*10^{-31} kg[/tex]

q= charge on an electron = [tex]1.6*10^{-19} C[/tex]

v= speed of electron= 700000m/s

substituting the values in the above equation, we get

[tex]V=\frac{9.1*10^{-31} *(700000)^{2} }{2*1.6*10^{-19} } =1.39V[/tex]

(1).  the potential difference that stopped the electron is 1.39 volts.

now the kinetic energy equation is :  2 ways[tex]KE=1/2[mv^{2} ]=\frac{9.1*10^{-31} *700000^{2} }{2} =2.22*10^{-19} J\\[/tex]

or [tex]KE=\frac{2.22*10^{-19} }{1.6*10^{-19} } =1.39eV[/tex]

(2).  the initial kinetic energy of the electron is 1.39eV.