Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The electric potential V(z) on the z-axis is : V = [tex](\frac{Q}{a^2} ) [ (a^2 + z^2)^{\frac{1}{2} } -z[/tex]
The magnitude of the electric field on the z axis is : E = kб 2[tex]\pi[/tex]( 1 - [z / √(z² + a² ) ] )
Given data :
V(z) =2kQ / a²(v(a² + z²) ) -z
Determine the electric potential V(z) on the z axis and magnitude of the electric field
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV [tex]\frac{k.dq}{\sqrt{R^2+z^2} } \\\\= \frac{k(\alpha (2\pi R)dR}{\sqrt{R^2+z^2} }[/tex] ----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = [tex]\int\limits^a_o {\frac{k(\alpha (2\pi R)dR)}{\sqrt{R^2+z^2} } } \,[/tex]
V = [tex]\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ][/tex]
= [tex]\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ][/tex]
Therefore the electric potential V(z) = [tex](\frac{Q}{a^2} ) [ (a^2 + z^2)^{\frac{1}{2} } -z[/tex]
Also
The magnitude of the electric field on the z axis is : E = kб 2[tex]\pi[/tex]( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : https://brainly.com/question/25923373
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.