Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The electric potential V(z) on the z-axis is : V = [tex](\frac{Q}{a^2} ) [ (a^2 + z^2)^{\frac{1}{2} } -z[/tex]
The magnitude of the electric field on the z axis is : E = kб 2[tex]\pi[/tex]( 1 - [z / √(z² + a² ) ] )
Given data :
V(z) =2kQ / a²(v(a² + z²) ) -z
Determine the electric potential V(z) on the z axis and magnitude of the electric field
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV [tex]\frac{k.dq}{\sqrt{R^2+z^2} } \\\\= \frac{k(\alpha (2\pi R)dR}{\sqrt{R^2+z^2} }[/tex] ----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = [tex]\int\limits^a_o {\frac{k(\alpha (2\pi R)dR)}{\sqrt{R^2+z^2} } } \,[/tex]
V = [tex]\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ][/tex]
= [tex]\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ][/tex]
Therefore the electric potential V(z) = [tex](\frac{Q}{a^2} ) [ (a^2 + z^2)^{\frac{1}{2} } -z[/tex]
Also
The magnitude of the electric field on the z axis is : E = kб 2[tex]\pi[/tex]( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : https://brainly.com/question/25923373
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.