Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The electric potential V(z) on the z-axis is : V = [tex](\frac{Q}{a^2} ) [ (a^2 + z^2)^{\frac{1}{2} } -z[/tex]
The magnitude of the electric field on the z axis is : E = kб 2[tex]\pi[/tex]( 1 - [z / √(z² + a² ) ] )
Given data :
V(z) =2kQ / a²(v(a² + z²) ) -z
Determine the electric potential V(z) on the z axis and magnitude of the electric field
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV [tex]\frac{k.dq}{\sqrt{R^2+z^2} } \\\\= \frac{k(\alpha (2\pi R)dR}{\sqrt{R^2+z^2} }[/tex] ----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = [tex]\int\limits^a_o {\frac{k(\alpha (2\pi R)dR)}{\sqrt{R^2+z^2} } } \,[/tex]
V = [tex]\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ][/tex]
= [tex]\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ][/tex]
Therefore the electric potential V(z) = [tex](\frac{Q}{a^2} ) [ (a^2 + z^2)^{\frac{1}{2} } -z[/tex]
Also
The magnitude of the electric field on the z axis is : E = kб 2[tex]\pi[/tex]( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : https://brainly.com/question/25923373
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.