Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Step by Step solution please.
Thanks


Step By Step Solution Please Thanks class=

Sagot :

Derivation of f(x):

   [tex]f'(x) = \frac{g(x)*8x-4x^2*g'(x)}{(g(x))^2} -\frac{1}{x+2}[/tex]

    Since g(3) = 6 and g'(3) = 3

   [tex]f'(3) = \frac{g(3)*8*3-4(3)^2*g'(3)}{(g(3))^2} -\frac{1}{3+2} \\f'(3) = \frac{6*8*3-4*9*3}{36} -\frac{1}{5} \\f'(3) = \frac{36}{36} -\frac{1}{5} =1-\frac{1}{5} =\frac{4}{5}\\ f'(3) = 0.8[/tex]

Thus f'(3) = 0.8

Hope that helps!

A couple of identities I used in derivation:

[tex]\frac{d}{dx} (ln x) = \frac{1}{x}[/tex]

View image linandrew41