Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex] \frac{4(x - 5)(x + 7)(x - 12)}{(x + 1)(x)(x - 12)} [/tex]
Step-by-step explanation:
A rational function is
[tex] \frac{p(x)}{q(x)} [/tex]
where q(x) doesn't equal zero.
If p is a asymptote, or hole at that value, then we will use
[tex](x - p)[/tex]
Step 1: We have asymptote as 0 and -1 so our denomiator will include
[tex](x - 0)(x - ( - 1)[/tex]
Which is
[tex](x)(x + 1)[/tex]
So our denomator so far is
[tex] \frac{p(x)}{x(x + 1)} [/tex]
Step 2: Find Holes.
Since 12 is the value of the hole,
[tex](x - 12)[/tex]
is a the binomial.
This will be both on the numerator and denomator so qe have
[tex] \frac{(x - 12)}{x(x + 1)(x - 12)} [/tex]
Step 3: Put the x intercepts in the numerator.
Since 5 and -7 is the intercepts,
[tex] \frac{(x - 12)(x - 5)(x + 7)}{x(x + 1)(x - 12)} [/tex]
Step 4: Horinzontal Asymptotes,
Multiply the numerator and denomiator out fully,
[tex] \frac{ {x}^{3} - 10 {x}^{2} - 59x + 420 }{ {x}^{3} - 12 {x}^{2} + x - 12} [/tex]
Take a L
look at the coefficients,
Notice they have the same degree,3, this means if we divide the leading coefficents, we will get our horinzonral asymptote.
Multiply the numerator by 4.
[tex] \frac{4(x - 12)(x - 5)(x - 7)}{x(x + 1)(x - 12)} [/tex]
Above is the function,
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.