Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The answer is no
*View the attached graph to check your answer graphically.*
Step-by-step explanation:
y = 4x + 9
y = 2x + 5
For this problem, I will be using substitution, since the both equations are already in the slope-intercept form, and it's a little easier than the elimination method.
First, I will substitute the first equation, for y, into the second equation:
y = 4x + 9
y = 2x + 5
4x + 9 = 2x + 5
Next, subtract 2x from both sides to isolate x:
4x + 9 = 2x + 5
-2x -2x
2x + 9 = 5
Then, subtract 9 from both sides:
2x + 9 = 5
- 9 - 9
2x = -4
Now, divide both sides by 2:
2x = -4
/2 /2
x = -2
Now, we find the value of y, by substituting -2 for x:
y = 2x + 5
y = 2(-2) + 5
y = -4 + 5
y = 1
(x, y) ==> (-2, 1)
Check your answer using (-2, 1):
y = 2x + 5
1 = 2(-2) + 5
1 = -4 + 5
1 = 1
This statment is correct
y = 4x + 9
1 = 4(-2) + 9
1 = -8 + 9
1 = 1
This statment is also correct
Check your answer using (-6, -7):
y = 2x + 5
-7 = 2(-6) + 5
-7 = -12 + 5
-7 = -7
This statment is correct
y = 4x + 9
-7 = 4(-6) + 9
-7 = -24 + 9
-7 = -15
This statment is NOT correct
Therefore, no (-6,-7) is NOT a solution to this system of equations.
*View the attached graph to check your answer graphically.*
Hope this helps!
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.