Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The multiplicative inverse for √2-i = 1/(√2+1) and The multiplicative inverse is √2+1 = 1/(√2-1)
Real and Imaginary Numbers/Complex Numbers
Given Data
- First expression = √2+i
- Second expression = √2-i
For√2+i
the real part is is √2 and the imaginary part is i
The multiplicative inverse is √2+1 = 1/(√2-1)
rationalising the denominator we have
= 1/√2-1 * √2-1/√2-1
= √2-1/(√2-1)*(√2-1)
= √2-1/(2-√2-√2+1)
= √2-1/(-2√2+3)
For√2-i
the real part is is √2 and the imaginary part is -i
The multiplicative inverse is √2-1 = 1/(√2+1)
Rationalising the denominator we have
= 1/√2+1 * √2+1/√2+1
= √2+1/(√2+1)*(√2+1)
= √2+1/(2+√2+√2+1)
= √2+1/(2√2+3)
Learn more about complex Numbers here
https://brainly.com/question/10662770
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.