Answered

At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Hello, could anyone please help me with my homework?
My question is:-
(x+6)^6
Please solve A.S.A.P.
Kindly don't lose your precious time by spamming; instead, please provide a high-quality answer. Thanks in advance :-)


Sagot :

Nayefx

Answer:

[tex] (x + 6 {)}^{6} = {x}^{6 } + 36{x}^{5} + 540{x}^{4} + 4320 {x}^{3} + 19440{x}^{2}+ 46656{x}^{} + 46656 [/tex]

Step-by-step explanation:

we want to solve the following binomial:

[tex](x + 6 {)}^{6} [/tex]

There is a handy way to expand powers of binomials which is known as binomial theorem . and it describes the algebraic expansion of powers of a binomial. binomial theorem is given by

[tex] \displaystyle (a + b {)}^{n} = \sum _{k = 0 }^{n} \binom{n}{k} {a}^{n - k} {b}^{k} [/tex]

comparing (x+6)⁶ to (a+b)ⁿ , we get

  • [tex]a \implies \: x[/tex]
  • [tex]b\implies \: 6[/tex]
  • [tex]n\implies \: 6[/tex]

now substitute them on the formula which yields:

[tex] \displaystyle (x + 6 {)}^{6} = \sum _{k = 0 }^{n} \binom{6}{k} {x}^{6 - k} \cdot {6}^{k} [/tex]

converting the summation notation into sum yields:

[tex] \displaystyle (x + 6 {)}^{6} = \binom{6}{0} {x}^{6 - 0} \cdot {6}^{0} + \binom{6}{1} {x}^{6 - 1} \cdot {6}^{1} + \binom{6}{2} {x}^{6 - 2} \cdot {6}^{2} + \binom{6}{3} {x}^{6 - 3} \cdot {6}^{3} + \binom{6}{4} {x}^{6 - 4} \cdot {6}^{4} + \binom{6}{5} {x}^{6 - 5} \cdot {6}^{5} + \binom{6}{6} {x}^{6 - 6} \cdot {6}^{6} \\ \implies(x + 6 {)}^{6} = \binom{6}{0} {x}^{6 } \cdot 1 + \binom{6}{1} {x}^{5} \cdot {6} + \binom{6}{2} {x}^{4} \cdot 36+ \binom{6}{3} {x}^{3} \cdot 216 + \binom{6}{4} {x}^{2} \cdot 1296+ \binom{6}{5} {x}^{} \cdot 7776+ \binom{6}{6} {x}^{0} \cdot 46656 \\ \implies(x + 6 {)}^{6} = 1 \cdot {x}^{6 } \cdot 1 + 6 \cdot{x}^{5} \cdot {6} + 15 \cdot {x}^{4} \cdot 36+ 20 \cdot {x}^{3} \cdot 216 + 15 \cdot{x}^{2} \cdot 1296+ 6 \cdot {x}^{} \cdot 7776+ 1 \cdot {x}^{0} \cdot 46656 \\ \implies \boxed{ (x + 6 {)}^{6} = {x}^{6 } + 36{x}^{5} + 540{x}^{4} + 4320 {x}^{3} + 19440{x}^{2}+ 46656 {x}^{} + 46656 }[/tex]

and we're done!

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.