Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex] (x + 6 {)}^{6} = {x}^{6 } + 36{x}^{5} + 540{x}^{4} + 4320 {x}^{3} + 19440{x}^{2}+ 46656{x}^{} + 46656 [/tex]
Step-by-step explanation:
we want to solve the following binomial:
[tex](x + 6 {)}^{6} [/tex]
There is a handy way to expand powers of binomials which is known as binomial theorem . and it describes the algebraic expansion of powers of a binomial. binomial theorem is given by
[tex] \displaystyle (a + b {)}^{n} = \sum _{k = 0 }^{n} \binom{n}{k} {a}^{n - k} {b}^{k} [/tex]
comparing (x+6)⁶ to (a+b)ⁿ , we get
- [tex]a \implies \: x[/tex]
- [tex]b\implies \: 6[/tex]
- [tex]n\implies \: 6[/tex]
now substitute them on the formula which yields:
[tex] \displaystyle (x + 6 {)}^{6} = \sum _{k = 0 }^{n} \binom{6}{k} {x}^{6 - k} \cdot {6}^{k} [/tex]
converting the summation notation into sum yields:
[tex] \displaystyle (x + 6 {)}^{6} = \binom{6}{0} {x}^{6 - 0} \cdot {6}^{0} + \binom{6}{1} {x}^{6 - 1} \cdot {6}^{1} + \binom{6}{2} {x}^{6 - 2} \cdot {6}^{2} + \binom{6}{3} {x}^{6 - 3} \cdot {6}^{3} + \binom{6}{4} {x}^{6 - 4} \cdot {6}^{4} + \binom{6}{5} {x}^{6 - 5} \cdot {6}^{5} + \binom{6}{6} {x}^{6 - 6} \cdot {6}^{6} \\ \implies(x + 6 {)}^{6} = \binom{6}{0} {x}^{6 } \cdot 1 + \binom{6}{1} {x}^{5} \cdot {6} + \binom{6}{2} {x}^{4} \cdot 36+ \binom{6}{3} {x}^{3} \cdot 216 + \binom{6}{4} {x}^{2} \cdot 1296+ \binom{6}{5} {x}^{} \cdot 7776+ \binom{6}{6} {x}^{0} \cdot 46656 \\ \implies(x + 6 {)}^{6} = 1 \cdot {x}^{6 } \cdot 1 + 6 \cdot{x}^{5} \cdot {6} + 15 \cdot {x}^{4} \cdot 36+ 20 \cdot {x}^{3} \cdot 216 + 15 \cdot{x}^{2} \cdot 1296+ 6 \cdot {x}^{} \cdot 7776+ 1 \cdot {x}^{0} \cdot 46656 \\ \implies \boxed{ (x + 6 {)}^{6} = {x}^{6 } + 36{x}^{5} + 540{x}^{4} + 4320 {x}^{3} + 19440{x}^{2}+ 46656 {x}^{} + 46656 }[/tex]
and we're done!
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.