Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Step-by-step explanation:
Using the section formula , if a point ( x , y ) divides the line joining the points ( x1 , y1 ) and ( x2 , y2 ) into the ratio m : n , then
( x , y ) = ( mx2 + nx1 / m + n , my2 + ny1 / m + n)
Let the points be A(-8,−2) and B(6,19). Let a point P(x,y) divides AB in the ratio 5:2
Therefore, we have
[tex]P(x,y) =( \frac{5 \times 6 + 2 \times - 8}{5 + 2} , \: \frac{5 \times 19 + 2 \times - 2}{5 + 2}) [/tex]
[tex]P(x,y) = ( \frac{30 + ( - 16)}{7} , \: \frac{95 + ( - 4)}{7} )[/tex]
[tex] P(x,y) = (2, 13)[/tex]
Answer:
(2, 13)
Step-by-step explanation:
Let P be the point that partitions the segment.
Let M = (-8, -2)
Let N = (6, 19)
If point P partitions the segment MN in a 5 : 2 ratio, then to calculate the x and y values of point P:
- divide the difference of the x (or y) values of the two endpoints by the sum of the ratios
- multiply this by 5, since P partitions the segment at 5 : 2
- add this to the x (or y) value of point M
x-value of P:
[tex]\sf \implies \left(\dfrac{x_N-x_M}{5+2}\right)\cdot5+x_N[/tex]
[tex]\sf \implies \left(\dfrac{6-(-8)}{5+2}\right)\cdot5+(-8)=2[/tex]
y-value of P:
[tex]\sf \implies \left(\dfrac{y_N-y_M}{5+2}\right)\cdot5+y_N[/tex]
[tex]\sf \implies \left(\dfrac{19-(-2)}{5+2}\right)\cdot5+(-2)=13[/tex]
[tex]\sf P=(2,13)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.