Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
[tex]{x}^{5} + 40{x}^{4} + 640{x}^{3} + 5120 {x}^{2} + 20480{x}^{}+ 32768 [/tex]
Step-by-step explanation:
This too follows the as same process as
- https://brainly.com/question/27201053
recall binomial theorem,
[tex] \displaystyle (a + b {)}^{n} = \sum _{k = 0} ^{n} \binom{n}{k} {a}^{n - k} {b}^{k} [/tex]
Given binomial:
- (x+8)⁵
comparing it to (a+b)ⁿ , we acquire:
- [tex]a \implies x[/tex]
- [tex]b\implies 8[/tex]
- [tex]n\implies 5[/tex]
Now substitute:
[tex] \displaystyle (x +8 {)}^{5} = \sum _{k = 0} ^{5} \binom{n}{k} {a}^{5- k} {b}^{k} [/tex]
To convert the summation into a sum, substitute the values from k=0 to k=5 into the expression which yields
[tex] \displaystyle (x + 8{)}^{5} = \binom{5}{0} {x}^{5 - 0} \cdot {8}^{0} + \binom{5}{1} {x}^{5 - 1} \cdot {8}^{1} + \binom{5}{2} {x}^{5 - 2} \cdot {8}^{2} + \binom{5}{3} {x}^{5 - 3} \cdot {8}^{3} + \binom{5}{4} {x}^{5- 4} \cdot {8}^{4} + \binom{5}{5} {x}^{5 - 5} \cdot {8}^{5} \\ \implies(x + 8 {)}^{5} = \binom{5}{0} {x}^{5} \cdot 1 + \binom{5}{1} {x}^{4} \cdot {8} + \binom{5}{2} {x}^{3} \cdot 64+ \binom{5}{3} {x}^{2} \cdot 512 + \binom{6}{4} {x}^{1} \cdot 4096+ \binom{5}{5} {x}^{0} \cdot 32768\\ \implies(x + 8{)}^{5} = 1 \cdot {x}^{5 } \cdot 1 + 5\cdot{x}^{4} \cdot {8} + 10 \cdot {x}^{3} \cdot 64+ 10 \cdot {x}^{2} \cdot 512 + 5 \cdot{x}^{1} \cdot 4096+ 1 \cdot {x}^{0} \cdot 32768 \\ \implies \boxed{ (x + 8 {)}^{5} = {x}^{5} + 40{x}^{4} + 640{x}^{3} + 5120 {x}^{2} + 20480{x}^{}+ 32768 }[/tex]
and we're done!
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.