At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The trigonometry identity sin(x + y) = sinx cosy + cosx siny.
What is sin(x + y) identity in trigonometry?
sin(x + y) is one of the identities in trigonometry for compound angles.
The angle (x + y) represents the compound angles.
sin(x + y) = sinx cosy + cosx siny
To prove
sin(x + y) = sinx cosy + cosx siny
Consider OX as a rotating line anti-clockwise. Let angle XOY = a
the making of an acute angle b the rotation in the same direction is
angleYOZ = b , angle XOZ = a + b
From triangle PTR,
∠TPR = 90 - ∠PRT , ∠ROX = a
From the right-angled triangle PQO
sin(a + b) = PQ/OP
= (PT + TQ) / OP
= PT/OP + TQ/OP
= PT/PR × PR/OP + RS/OR × OR/OP
= cos (∠TPR ) sinb + sina cosb
= sina cosb + cosa sinb
if we replace a=x and b=y
Therefore, sin(x + y) = sinx cosy + cosx siny.
Learn more about trigonometry identity;
brainly.com/question/63577
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.