At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The mean kinetic energy of the N₂ molecules at 25 °C is 3593.519 joules per mole.
How to estimate the mean square kinetic energy associated to gas molecules
Let suppose that the gas sample behaves ideally. The Graham's law establishes a connection between the ideal gas model and the kinetic theory of gases.
In this question we need to use this law to estimate the average kinetic energy (Kₐ), in joules per mole, of a diatomic gas (N₂), which is defined by the following expression:
[tex]K_{a} = \frac{3}{2}\cdot R_{u}\cdot T[/tex] (1)
Where:
- [tex]R_{u}[/tex] - Ideal gas constant, in joules per mole-Kelvin.
- [tex]T[/tex] - Temperature, in Kelvin
If we know that [tex]R_{u} = 8.314\,\frac{J}{mol\cdot K}[/tex] and [tex]T = 288.15\,K[/tex], then the average kinetic energy is:
[tex]K_{a} = \frac{3}{2}\cdot \left(8.314\,\frac{J}{mol\cdot K} \right) \cdot (288.15\,K)[/tex]
[tex]K_{a} = 3593.519\,\frac{J}{mol}[/tex]
The mean kinetic energy of the N₂ molecules at 25 °C is 3593.519 joules per mole. [tex]\blacksquare[/tex]
To learn more on kinetic theory of gases, we kindly invite to check this verified question: https://brainly.com/question/15064212
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.