At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The area labeled B is 9 times the area labeled A. Express b in terms of a.
b=_____?


The Area Labeled B Is 9 Times The Area Labeled A Express B In Terms Of A B class=

Sagot :

leena

Hi there!

For the graph on the left, we know that the area A is equal to:
[tex]A = \int\limits^a_0 {e^x} \, dx[/tex]

Area 'B' is 9 times this area, so:
[tex]B = 9 \cdot \int\limits^a_0 {e^x} \, dx[/tex]

We can evaluate the integral:
[tex]B = 9 \cdot \int\limits^a_0 {e^x} \, dx \\\\B = 9 \cdot e^x \left \| a}} \atop {0}} \right. \\\\B = 9 (e^a - 1)[/tex]

We also know that:
[tex]B = \int\limits^b_0 {e^x} \, dx[/tex]

Evaluate:

[tex]B = e^x \left \| b}} \atop {0}} \right. = e^b - 1[/tex]

Set the two equations for 'B' equal:
[tex]e^b - 1 = 9(e^a - 1)\\\\e^b - 1 = 9e^a - 9 \\\\e^b = 9e^a - 8[/tex]

Take the natural log of both sides:
[tex]ln(e^b) = ln(9e^a - 8)\\\\\boxed{b = ln(9e^a - 8)}[/tex]