Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Using the normal distribution and the central limit theorem, we have that:
a) The sampling distribution is approximately normal, with mean 0.22 and standard error 0.0338.
b) There is a 0.1867 = 18.67% probability that in a random sample of 150 couples more than 25% met online.
c) There is a 0.2584 = 25.84% probability that in a random sample of 150 couples between 15% and 20% met online.
Normal Probability Distribution
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1 - p)}{n}}[/tex], as long as [tex]np \geq 10[/tex] and [tex]n(1 - p) \geq 10[/tex].
In this problem:
- 22% of couples meet online, hence p = 0.22.
- A sample of 150 couples is taken, hence n = 150.
Item a:
The mean and the standard error are given by:
[tex]\mu = p = 0.22[/tex]
[tex]s = \sqrt{\frac{p(1 - p)}{n}} = \sqrt{\frac{0.22(0.78)}{150}} = 0.0338[/tex]
The sampling distribution is approximately normal, with mean 0.22 and standard error 0.0338.
Item b:
The probability is one subtracted by the p-value of Z when X = 0.25, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.25 - 0.22}{0.0338}[/tex]
Z = 0.89
Z = 0.89 has a p-value of 0.8133.
1 - 0.8133 = 0.1867.
There is a 0.1867 = 18.67% probability that in a random sample of 150 couples more than 25% met online.
Item c:
The probability is the p-value of Z when X = 0.2 subtracted by the p-value of Z when X = 0.15, hence:
X = 0.2:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.22}{0.0338}[/tex]
Z = -0.59
Z = -0.59 has a p-value of 0.2776.
X = 0.15:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.15 - 0.22}{0.0338}[/tex]
Z = -2.07
Z = -2.07 has a p-value of 0.0192.
0.2776 - 0.0192 = 0.2584.
There is a 0.2584 = 25.84% probability that in a random sample of 150 couples between 15% and 20% met online.
To learn more about the normal distribution and the central limit theorem, you can check https://brainly.com/question/24663213
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.