Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Using the normal distribution and the central limit theorem, we have that:
a) The sampling distribution is approximately normal, with mean 0.22 and standard error 0.0338.
b) There is a 0.1867 = 18.67% probability that in a random sample of 150 couples more than 25% met online.
c) There is a 0.2584 = 25.84% probability that in a random sample of 150 couples between 15% and 20% met online.
Normal Probability Distribution
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1 - p)}{n}}[/tex], as long as [tex]np \geq 10[/tex] and [tex]n(1 - p) \geq 10[/tex].
In this problem:
- 22% of couples meet online, hence p = 0.22.
- A sample of 150 couples is taken, hence n = 150.
Item a:
The mean and the standard error are given by:
[tex]\mu = p = 0.22[/tex]
[tex]s = \sqrt{\frac{p(1 - p)}{n}} = \sqrt{\frac{0.22(0.78)}{150}} = 0.0338[/tex]
The sampling distribution is approximately normal, with mean 0.22 and standard error 0.0338.
Item b:
The probability is one subtracted by the p-value of Z when X = 0.25, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.25 - 0.22}{0.0338}[/tex]
Z = 0.89
Z = 0.89 has a p-value of 0.8133.
1 - 0.8133 = 0.1867.
There is a 0.1867 = 18.67% probability that in a random sample of 150 couples more than 25% met online.
Item c:
The probability is the p-value of Z when X = 0.2 subtracted by the p-value of Z when X = 0.15, hence:
X = 0.2:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.22}{0.0338}[/tex]
Z = -0.59
Z = -0.59 has a p-value of 0.2776.
X = 0.15:
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.15 - 0.22}{0.0338}[/tex]
Z = -2.07
Z = -2.07 has a p-value of 0.0192.
0.2776 - 0.0192 = 0.2584.
There is a 0.2584 = 25.84% probability that in a random sample of 150 couples between 15% and 20% met online.
To learn more about the normal distribution and the central limit theorem, you can check https://brainly.com/question/24663213
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.