Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]
Derivative of tan(x) is sec²x
[tex]\qquad \sf \dashrightarrow \: \therefore \dfrac{d}{dx} ( \tan(x)) = { \sec}^{2} (x)[/tex]
You can check the first principle method of derivation in attachment
[tex]\rightarrow \sf \dfrac{d}{dx} (tan(x))[/tex]
[tex]\rightarrow \sf \dfrac{d}{dx} ( \ \dfrac{sin(x)}{cos(x)} \ )[/tex]
use the quotient rule
[tex]\rightarrow \sf \dfrac{cos(x) * \dfrac{d}{dx} (sin(x)-sin(x)*\dfrac{d}{dx}(cos(x) }{cos(x)^2}[/tex]
[tex]\rightarrow \sf \dfrac{cos(x) * cos(x)-sin(x)*(-sin(x) )}{cos(x)^2}[/tex]
[tex]\rightarrow \sf \dfrac{cos(x)^2+sin(x)^2}{cos(x)^2}[/tex]
[tex]\rightarrow \sf \dfrac{1}{cos(x)^2}[/tex]
[tex]\rightarrow \sf sec(x)^2[/tex]
used formula's :
- cos²(x) + sin²(x) = 1
- [tex]\sf \dfrac{1}{cos^2(x) }= sec^2(x)[/tex]
- [tex]\sf \frac{d}{dx}[/tex] cos(x) = -sin(x)
- [tex]\sf \frac{d}{dx}[/tex] sin(x) = cos(x)
- tan(x) = sin(x)/cos(x)
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.