Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Recall the geometric sum,
[tex]\displaystyle \sum_{k=0}^{n-1} x^k = \frac{1-x^k}{1-x}[/tex]
It follows that
[tex]1 - x + x^2 - x^3 + \cdots + x^{2020} = \dfrac{1 + x^{2021}}{1 + x}[/tex]
So, we can rewrite the integral as
[tex]\displaystyle \int_0^\infty \frac{x^2 + 1}{x^4 + x^2 + 1} \frac{\ln(1 + x^{2021}) - \ln(1 + x)}{\ln(x)} \, dx[/tex]
Split up the integral at x = 1, and consider the latter integral,
[tex]\displaystyle \int_1^\infty \frac{x^2 + 1}{x^4 + x^2 + 1} \frac{\ln(1 + x^{2021}) - \ln(1 + x)}{\ln(x)} \, dx[/tex]
Substitute [tex]x\to\frac1x[/tex] to get
[tex]\displaystyle \int_0^1 \frac{\frac1{x^2} + 1}{\frac1{x^4} + \frac1{x^2} + 1} \frac{\ln\left(1 + \frac1{x^{2021}}\right) - \ln\left(1 + \frac1x\right)}{\ln\left(\frac1x\right)} \, \frac{dx}{x^2}[/tex]
Rewrite the logarithms to expand the integral as
[tex]\displaystyle - \int_0^1 \frac{1+x^2}{1+x^2+x^4} \frac{\ln(x^{2021}+1) - \ln(x^{2021}) - \ln(x+1) + \ln(x)}{\ln(x)} \, dx[/tex]
Grouping together terms in the numerator, we can write
[tex]\displaystyle -\int_0^1 \frac{1+x^2}{1+x^2+x^4} \frac{\ln(x^{2020}+1)-\ln(x+1)}{\ln(x)} \, dx + 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx[/tex]
and the first term here will vanish with the other integral from the earlier split. So the original integral reduces to
[tex]\displaystyle \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \frac{\ln(1-x+\cdots+x^{2020})}{\ln(x)} \, dx = 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx[/tex]
Substituting [tex]x\to\frac1x[/tex] again shows this integral is the same over (0, 1) as it is over (1, ∞), and since the integrand is even, we ultimately have
[tex]\displaystyle \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \frac{\ln(1-x+\cdots+x^{2020})}{\ln(x)} \, dx = 2020 \int_0^1 \frac{1+x^2}{1+x^2+x^4} \, dx \\\\ = 1010 \int_0^\infty \frac{1+x^2}{1+x^2+x^4} \, dx \\\\ = 505 \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4} \, dx[/tex]
We can neatly handle the remaining integral with complex residues. Consider the contour integral
[tex]\displaystyle \int_\gamma \frac{1+z^2}{1+z^2+z^4} \, dz[/tex]
where γ is a semicircle with radius R centered at the origin, such that Im(z) ≥ 0, and the diameter corresponds to the interval [-R, R]. It's easy to show the integral over the semicircular arc vanishes as R → ∞. By the residue theorem,
[tex]\displaystyle \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4}\, dx = 2\pi i \sum_\zeta \mathrm{Res}\left(\frac{1+z^2}{1+z^2+z^4}, z=\zeta\right)[/tex]
where [tex]\zeta[/tex] denotes the roots of [tex]1+z^2+z^4[/tex] that lie in the interior of γ; these are [tex]\zeta=\pm\frac12+\frac{i\sqrt3}2[/tex]. Compute the residues there, and we find
[tex]\displaystyle \int_{-\infty}^\infty \frac{1+x^2}{1+x^2+x^4} \, dx = \frac{2\pi}{\sqrt3}[/tex]
and so the original integral's value is
[tex]505 \times \dfrac{2\pi}{\sqrt3} = \boxed{\dfrac{1010\pi}{\sqrt3}}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.