Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
x = 67° (nearest whole degree)
Step-by-step explanation:
Sine Rule
[tex]\sf \dfrac{sin(A)}{a}= \dfrac{sin(B)}{b}= \dfrac{sin(C)}{c}[/tex]
where A, B and C are the angles, and a, b and c are the sides opposite the angles
Given information
From inspection of the triangle:
- A = 38°
- a = 12
- B = x°
- b = 18
Finding x:
Substitute given values into the formula and solve for x:
[tex]\sf \implies \dfrac{sin(38)}{12}= \dfrac{sin(x)}{18}[/tex]
[tex]\sf \implies 18\cdot\dfrac{sin(38)}{12}= sin(x)[/tex]
[tex]\sf \implies sin(x)=\dfrac32sin(38)[/tex]
[tex]\sf \implies x=sin^{-1}\left(\dfrac32sin(38)\right)[/tex]
[tex]\sf \implies x=67.44208077...[/tex]
Final Solution
x = 67° (nearest whole degree)
Answer:
∠x = 67°
Step-by-step explanation:
From the Law of Sines,
we know that :
- sin(A) / a = sin(B) / a
Here we have :
- a = 12
- b = 18
- ∠A = 38°
- ∠B = x°
On substituting,
- sin38° / 12 = sinx° / 18
- sinx° = 3/2 x sin38°
- x = 3/2sin38° x sin⁻¹
- ∠x = 67°
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.