Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
Center: (3,-1)
Radius: 3
Step-by-step explanation:
Given:
[tex]\displaystyle \large{x^2+y^2-6x+2y+1=0}[/tex]
First, we have to convert the following standard circle equation to this:
[tex]\displaystyle \large{(x-h)^2+(y-k)^2=r^2}[/tex]
where h is horizontal shift, k is vertical shift and r is radius.
That means we have to complete the square for both x-term and y-term.
Rearrange the equation:
[tex]\displaystyle \large{x^2-6x+y^2+2y+1=0}\\\displaystyle \large{(x^2-6x)+(y^2+2y+1)=0}[/tex]
For [tex]\displaystyle \large{y^2+2y+1}[/tex], can be converted to perfect square as [tex]\displaystyle \large{(y+1)^2}[/tex]. Hence:
[tex]\displaystyle \large{(x^2-6x)+(y+1)^2=0}[/tex]
For the x-terms, we have to find another value that can complete the square. We know that [tex]\displaystyle \large{(a\pm b)^2 = a^2 \pm 2ab + b^2}[/tex].
For [tex]\displaystyle \large{x^2-6x}[/tex] can be [tex]\displaystyle \large{x^2-2(x)(3)+3^2 \to x^2-6x+9}[/tex]. So our another value is 9.
[tex]\displaystyle \large{(x^2-6x+9-9)+(y+1)^2=0}[/tex]
From above, we add -9 because the original expression isn’t actual perfect square.
Separate -9 out of [tex]\displaystyle \large{x^2-6x+9}[/tex]:
[tex]\displaystyle \large{(x^2-6x+9)-9+(y+1)^2=0}[/tex]
Transport -9 to add another side:
[tex]\displaystyle \large{(x^2-6x+9)+(y+1)^2=9}[/tex]
Complete the square:
[tex]\displaystyle \large{(x-3)^2+(y+1)^2=9}[/tex]
Finally, we have our needed equation to find radius and center. The coordinate of center is defined as the point (h,k) from [tex]\displaystyle \large{(x-h)^2+(y-k)^2=r^2}[/tex] and the radius is defined as r.
Hence, from the equation:
The coordinate of center is (3,-1) with radius equal to 3.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.