Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
- radius = [tex] \sqrt{74} [/tex]
- center = [tex](4,-3)[/tex]
Step-by-step explanation:
We would like to calculate the centre and the radius of the circle . The given equation is ,
[tex]\longrightarrow (x - 4)^2+(y+3)^2=74 [/tex]
As we know that the Standard equation of circle is given by ,
[tex]\longrightarrow (x - h)^2+(y-k)^2=r^2[/tex]
where ,
- [tex](x,y)[/tex] is a point on circle .
- [tex](h,k)[/tex] is the centre of circle .
- [tex]r[/tex] is the radius of the circle .
We can rewrite the equation as ,
[tex]\longrightarrow (x-4)^2+\{ y -(-3)\}^2=(\sqrt{74})^2\\ [/tex]
Now on comparing to the standard form , we have ;
- radius = [tex]r[/tex] = [tex]\sqrt{74}[/tex]
- center = [tex](h,k)[/tex] =[tex](4,-3)[/tex]
Graph :-
[tex] \setlength{\unitlength}{7mm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\circle*{0.2}}\put(0.2, - .1){(4,-3)}\put(-1.2,0){\vector(0,1){5}}\put(-1.2,0){\vector(0, - 1){5}}\put(-1,0.7){\vector(1,0){5}}\put(-1,0.7){\vector( - 1,0){5}}\put(0,0){\line(-1,0){2.3}}\put( - 1.2,-0.7){$\sf \sqrt{74}$}\put(2,6){$\boxed{\sf \textcopyright \: RISH4BH }$}\end{picture} [/tex]
And we are done !

We are given the equation of circle (x - 4)² + (y + 3)² = 74 , but let's recall the standard equation of circle i.e (x - h)² + (y - k)² = r², where (h, k) is the centre of the circle and r being the radius ;
So, consider the equation of circle ;
[tex]{:\implies \quad \sf (x-4)^{2}+(y+3)^{2}=74}[/tex]
Can be further written as ;
[tex]{:\implies \quad \sf (x-4)^{2}+\{y-(-3)\}^{2}=({\sqrt{74}})^{2}}[/tex]
On comparing this equation with the standard equation of Circle, we will get, centre and radius as follows
- Centre = (4, -3)
- Radius = √74 units
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.