Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The image point of P(x,y) = (5, -6) after applying a horizontal reflection is P'(x,y) = (1, -6).
How to apply a rigid transformation in a point on a Cartesian plane
In geometry, a rigid transformation is a transformation applied onto a geometric object such that Euclidean distance in every point of it is conserved. Translations are examples of rigid transformations and are defined by this formula:
P'(x,y) = P(x,y) + T(x,y) (1)
Where:
- P(x,y) - Original point
- T(x,y) - Translation vector
- P'(x,y) - Image point
If we know that P(x,y) = (5, -6) and T(x,y) = (-4, 0), then the image point is:
P'(x,y) = (5, -6) + (-4, 0)
P'(x,y) = (1, -6)
The image point of P(x,y) = (5, -6) after applying a horizontal reflection is P'(x,y) = (1, -6). [tex]\blacksquare[/tex]
Remark
Statement is incorrect and poorly formatted. Correct form is shown below:
What is the image point of (x, y) = (5, -6) after the transformation of translating horizontally the point -4 units to the y-axis?
To learn more on rigid transformations, we kindly invite to check this verified question: https://brainly.com/question/1761538
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.