Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The image point of P(x,y) = (5, -6) after applying a horizontal reflection is P'(x,y) = (1, -6).
How to apply a rigid transformation in a point on a Cartesian plane
In geometry, a rigid transformation is a transformation applied onto a geometric object such that Euclidean distance in every point of it is conserved. Translations are examples of rigid transformations and are defined by this formula:
P'(x,y) = P(x,y) + T(x,y) (1)
Where:
- P(x,y) - Original point
- T(x,y) - Translation vector
- P'(x,y) - Image point
If we know that P(x,y) = (5, -6) and T(x,y) = (-4, 0), then the image point is:
P'(x,y) = (5, -6) + (-4, 0)
P'(x,y) = (1, -6)
The image point of P(x,y) = (5, -6) after applying a horizontal reflection is P'(x,y) = (1, -6). [tex]\blacksquare[/tex]
Remark
Statement is incorrect and poorly formatted. Correct form is shown below:
What is the image point of (x, y) = (5, -6) after the transformation of translating horizontally the point -4 units to the y-axis?
To learn more on rigid transformations, we kindly invite to check this verified question: https://brainly.com/question/1761538
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.