Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]
Here's the solution~
Standard equation of a circle is represented as :
[tex]\qquad \sf \dashrightarrow \:(x - h) {}^{2} + (y - k) {}^{2} = r {}^{2} [/tex]
where,
- h = x - coordinate of center
- k = y - coordinate of center
- radius = diameter/2 = [tex]4\sqrt{3}[/tex]
Now, let's plug in the values to find the required equation of circle ~
[tex]\qquad \sf \dashrightarrow \:(x - 8) {}^{2} + (y - ( - 10)) {}^{2} = (4\sqrt{3} ) {}^{2} [/tex]
[tex]\qquad \sf \dashrightarrow \:(x - 8) {}^{2} + (y + 10) {}^{2} = 16 \times 3[/tex]
[tex]\qquad \sf \dashrightarrow \:(x - 8) {}^{2} + (y + 10) {}^{2} = 48[/tex]
Answer:
The equation of given circle with centre C ( 8 , - 10 ) and diameter ( 8√3 ) is x² + y² - 16x + 20y + 116 = 0
[tex]\quad\rule{300pt}{1pt}\quad [/tex]
Solution:
The standard equation of Circle is given by :
[tex] {\pmb{\sf {\longrightarrow r^2 = (x-h)^2 +( y-k)^2}} }[/tex]
This is the standard form of the equation. Thus if we know the coordinates of center of the circle and it's radius, we can easily find its equation
Here, in this question we are given that the centre C is ( 8 , -10 ) and diameter 8√3.
[tex] \longrightarrow[/tex]h = 8
[tex] \longrightarrow[/tex] k = - 10
[tex] \longrightarrow[/tex] r = [tex] \sf{\dfrac{diameter}{2}}[/tex]
[tex] \longrightarrow[/tex] r = [tex] \sf 4\sqrt{3}[/tex]
[tex] \qquad\qquad\rule{250pt}{1pt}\qquad[/tex]
On putting the values in the formula :
[tex] \sf{:\implies \qquad r^2 = (x-h)^2+ ( y-k)^2 }[/tex]
[tex] \sf{:\implies \qquad (4\sqrt{3})^2 = ( x-8)^2 +(y-(-10))^2 }[/tex]
[tex] \sf{:\implies \qquad (4)^2.(\sqrt{3})^2=(x-8)^2+(y+10)^2}[/tex]
[tex] \sf{:\implies \qquad 16\times 3 =( x^2 + 8^2 -2\times x \times 8 ) + ( y^2 + 10^2 + 2\times y \times 10 )}[/tex]
[tex] \sf{:\implies \qquad 48 = x^2 + y^2 - 16x + y^2 + 100 + 20y }[/tex]
[tex] \sf{:\implies \qquad 48 = x^2 + y^2 -16 x + 20y + 100 + 64 }[/tex]
[tex] \sf{:\implies \qquad 48 = x^2 +y^2 -16x +20y +164}[/tex]
[tex] \sf{:\implies \qquad x^2 + y^2 -16x +20y +164 - 48 = 0}[/tex]
[tex] \sf{:\implies \qquad{\boxed{ \sf x^2 + y^2 -16x + 20y +116 = 0 }}}[/tex]
ㅤㅤㅤㅤ~Hence, the required equation of Circle is x² + y² - 10x + 20y + 116 = 0
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.