At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Is the function is even, odd or neither? How do you know?

Is The Function Is Even Odd Or Neither How Do You Know class=

Sagot :

Answer:

Step-by-step explanation:

A function is even if [tex]f(x)=f(-x)[/tex], or if the graph has a rotational symmetry about the x-axis. A function is odd if [tex]f(x)=-f(-x)[/tex]. For example, if you were to reflect that graph about the y-axis. Would it present symmetry?

From the graph we know from the fundamental theorem of Algebra that since f has 3 distinct roots, and changes directions three times, we are dealing with a cubic equation in the form of [tex]f(x)=x(x+2)(x-2)[/tex]

Since the equation is known, try the formulas

First, test for an even function, [tex]f(x)=f(-x)[/tex], this means that for our function, f, [tex]f(2)=f(-2)[/tex] see if this holds true

[tex]2(2+2)(2-2) = -2(-2+2)(-2-2)\\2(4)(0)=-2(0)(-4)\\0 = 0[/tex]

This means that the function is even.