Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
The product of a rational number with an irrational number is an irrational number. To see this assume that x is a rational number and y an irrational number. Then let us assume that the product xy is rational, which means that there are integers a,b such that xy=a/b. But then we obtain y=(1/x)(a/b) which is also rational since the set of rational numbers is closed under multiplication. But this is a contradiction since y was assumed to be an irrational number.
Step-by-step explanation:
Question:Now consider the product of a nonzero rational number and an irrational number. Again, assume x =a/b , where a and b are integers and b ≠ 0. This time let y be an irrational number. If we assume the product x · y is rational, we can set the product equal to m/n, where m and n are integers and n ≠ 0. The steps for solving this equation for y are shown. Based on what we established about the classification of y and using the closure of integers, what does the equation tell you about the type of number y must be for the product to be rational? What conclusion can you now make about the result of multiplying a rational and an irrational number?
Answer:2
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.