At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Given Information :-
⠀
A cone with dimensions :-
- Radius = 3 cm
- Slant height ( l ) = 7 cm
⠀
Another cone with dimensions :-
⠀
- Radius = 5 cm
- Slant height = 9 cm
⠀
To Find :-
⠀
- The ratio of their total surface area
⠀
Formula Used :-
⠀
[tex] \qquad \diamond \: \underline{ \boxed{ \red{ \sf T.S.A._{Cone}= \pi r(r+l) }}} \: \star[/tex]
⠀
Solution :-
⠀
For the first cone,
⠀
Since, we don't really have to find the exact values of the surface area, we will let pi remain as a sign itself, this will make the calculations easier.
⠀
[tex] \sf \longrightarrow T.S.A. = \pi \times 3(3 + 7) \\ \\ \\ \sf \longrightarrow T.S.A. = \pi \times 3 \times 10 \: \: \: \\ \\ \\ \sf \longrightarrow T.S.A. =30 \pi \: {cm}^{2} \: \: \: \: \: \: \: \: \\ \\ [/tex]
Now, for the second cone,
⠀
[tex] \sf \longrightarrow T.S.A. = \pi \times 5(5 + 9) \\ \\ \\ \sf \longrightarrow T.S.A. = \pi \times 5 \times 14 \: \: \: \: \\ \\ \\ \sf \longrightarrow T.S.A. =70 \pi \: {cm}^{2} \: \: \: \: \: \: \: \: \: \\ \\ [/tex]
Now, we just have to calculate the ratio of their surface areas, thus,
⠀
[tex] \sf \longrightarrow Ratio = \dfrac{Surface ~area~of~first~cone}{Surface ~area~of~second~cone} \\ \\ \\ \sf \longrightarrow Ratio = \frac{30 \pi \: {cm}^{2} }{70 \pi \: {cm}^{2} } \: \: \: \: \: \: \: \: \: \qquad \qquad \qquad \\ \\ \\ \sf \longrightarrow Ratio = \frac{ 3 \cancel{0 \pi \: {cm}^{2}} }{ 7 \cancel{0 \pi \: {cm}^{2} } } \qquad \qquad \qquad \qquad \\ \\ \\\sf \longrightarrow Ratio = \frac{3}{7} = 3 : 7 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ [/tex]
Thus, the ratio between the surface areas of the cones is 3 : 7.
⠀
[tex] \underline{ \rule{227pt}{2pt}} \\ \\ [/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.