Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
8. For brevity, let U = unemployed, E = employed, M = male, F = female. We're given that
P(M) = P(F) = 50/100 = 1/2
P(U) = 60/100 = 3/5
P(M | U) = 2/3
P(E) = 40/100 = 2/5
P(F | E) = 3/4
8a. This follows immediately from the given information. Specifically,
P(E) = 1 - P(U) = 1 - 3/5 = 2/5
8b. By definition of conditional probability,
P(A | B) = P(A and B) / P(B) ⇒ P(A and B) = P(A | B) P(B)
It follows that
P(M and U) = P(M | U) P(U) = 2/3 • 3/5 = 2/5
8c. Using Bayes' rule/the definition of conditional probability,
P(U | F) = P(U and F) / P(F) = P(F | U) P(U) / P(F)
Since F and M are mutually exclusive,
P(F | U) = 1 - P(M | U)
and so
P(U | F) = (1 - 2/3) • 3/5 / [(1 - 2/3) • 3/5 + 3/4 • 2/5] = 2/5
8d. Here we assume gender and employment status are independent, so for instance
P(F and E) = P(F) P(E)
We then have by the inclusion/exclusion principle that
P(F or U) = P(F) + P(U) - P(F and U) = P(F) + P(U) - P(F) P(U)
We also have by the law of total probability
P(F) = P(F and U) + P(F and E)
so
P(F or U) = P(F and U) + P(F and E) + P(U) - P(F) P(U)
By the assumed independence,
P(F or U) = P(F) P(U) + P(F) P(E) + P(U) - P(F) P(U)
P(F or U) = P(F) P(E) + P(U)
P(F or U) = 1/2 • 2/5 + 3/5 = 4/5
9.
a. This is mostly a matter of counting the ways a given type of stamp can fall out.
[tex]P(A) = \dfrac{\dbinom{20}3}{\dbinom{24}3} = \dfrac{285}{506}[/tex]
since there are 20 non-green stamps.
[tex]P(B) = \dfrac{\dbinom21 \dbinom{22}2}{\dbinom{24}3} = \dfrac{21}{92}[/tex]
since there are 2 red and unused stamps, 1 of which we want; the other 2 stamps come from the remaining 22 non-red-and-unused stamps.
[tex]P(A \cap B) = \dfrac{\dbinom21 \dbinom{18}2}{\dbinom{24}3} = \dfrac{153}{1012}[/tex]
since exactly 1 of the stamps must be red and unused, and the other 2 stamps that fall out can be neither green nor red and unused.
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B) = \dfrac{162}{253}[/tex]
which follows from the inclusion/exclusion principle.
b. There is a total of 10 used stamps, so the probability of at least 1 going missing is
[tex]P(C) = \dfrac{\dbinom{10}1\dbinom{14}2 + \dbinom{10}2\dbinom{14}1 + \dbinom{10}3}{\dbinom{24}3} = \dfrac{415}{506}[/tex]
By definition of conditional probability,
[tex]P(C \mid A) = \dfrac{P(C \cap A)}{P(A)}[/tex]
However, there are no used green stamps; any used stamp that goes missing must be red, blue or yellow. So the event A ∩ C is really just the event C, and
[tex]P(C \mid A) = P(C) = \dfrac{415}{506}[/tex]
c. A and C are independent if and only if
[tex]P(A \cap C) = P(A) P(C)[/tex]
We know
[tex]P(C \cap A) = P(C)[/tex]
so if A and C are independent, then
[tex]P(C) = P(A) P(C)[/tex]
but this would imply P(A) = 1, which is clearly not the case as we found in 9.a. So A and C are not independent.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.