Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Using the z-distribution, it is found that the margin of error for a 95% confidence interval is of $0.04.
What is a z-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm z\frac{\sigma}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- z is the critical value.
- n is the sample size.
- [tex]\sigma[/tex] is the standard deviation for the sample.
The margin of error is given by:
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In this problem, the values of the parameters are:
[tex]z = 1.96, \sigma = 0.48, n = 576[/tex].
Hence, the margin of error, in dollars, is given by:
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]M = 1.96\frac{0.48}{\sqrt{576}}[/tex]
M = 0.04.
More can be learned about the z-distribution at https://brainly.com/question/25890103
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.