Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using the z-distribution, it is found that the 95% confidence interval for the proportion of sales that occured in December is (0.1648, 0.2948).
What is a confidence interval of proportions?
A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
- [tex]\pi[/tex] is the sample proportion.
- z is the critical value.
- n is the sample size.
In this problem, we have a 95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.
The sample size and the estimate are given by:
[tex]n = 161, \pi = \frac{37}{161} = 0.2298[/tex]
Hence:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2298 - 1.96\sqrt{\frac{0.2298(0.7702)}{161}} = 0.1648[/tex]
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2298 + 1.96\sqrt{\frac{0.2298(0.7702)}{161}} = 0.2948[/tex]
The 95% confidence interval for the proportion of sales that occured in December is (0.1648, 0.2948).
More can be learned about the z-distribution at https://brainly.com/question/25890103
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.