At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The area of the considered composite figure is given by: Option: 6π + 16 cm²
How to calculate the surface area of a composite figure?
Surface area are derived for some standard shapes like circle, triangle, parallelogram, rectangle, trapezoid, etc.
When some shape comes which isn't standard figure, then we find its area by slicing it (virtually, like by drawing lines) in standard shapes. Then we calculate those composing shapes' area and sum them all.
Thus, we have:
[tex]\text{Area of composite figure} = \sum (\text{Area of composing figures})[/tex]
That ∑ sign shows "sum"
For this case, the missing image is attached below.
As visible, the area of the figure = Sum of area of those 3 semi circles + Area of that square(its square because it has 4 equal sides in which adjacent sides are perpendicular) in between.
The side of the square is of 2+2=4 cm( as half of its side is 2 cm), thus, Area of that square = 4² = 16 cm²
All those 3 semicircles has radius = 2 cm
Since radius is same, so area of those 3 semicircle is same = [tex]\dfrac{\pi r^2}{2} = \dfrac{\pi (2)^2}{2} = 2 \pi\: \rm cm^2[/tex]
Thus, we get:
Area of the composite figure = [tex]2 \pi +2 \pi +2 \pi + 16 \: \rm cm^2 = 6 \pi+ 16 \: \rm cm^2[/tex]
Learn more about area of a composite figure here:
https://brainly.com/question/10254615
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.