Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The expression that represents the area of the base of the pyramid(right pyramid) is given by: Option A: 3v/h unit²
What is a right rectangular pyramid?
A right rectangular pyramid is a pyramid, with four slant sides, and a rectagular base, such that all the sides are congruent and the vertex is atop of the midpoint of the base rectangle.
How to find the volume and base's area of a right rectangular pyramid?
Suppose the base of the pyramid has length = l units, and width = w units.
Suppose that the height of the pyramid is of h units, then:
[tex]v = \dfrac{l \times w \times h}{3} \: \rm unit^3[/tex] is the volume of that pyramid.
The base is a rectangle with length = L units, and width = W units, so its area is:
[tex]b = l \times w\: \rm unit^2[/tex]
Thus, we can express the area of its base in terms of its volume as:
[tex]v = \dfrac{l \times w \times h}{3} \: \rm unit^3 = \dfrac{b\times h}{3}\\\\3v = b\times h\\\\\\b = \dfrac{3v}{h} \: \rm unit^2[/tex]
Thus, the expression that represents the area of the base of the pyramid (right pyramid) is given by: Option A: 3v/h unit²
Learn more about right rectangular prism here:
https://brainly.com/question/3712320
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.