Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The sequences of transformations that could be applied to the parent function are (e) Reflect over the y-axis, vertically stretch by a factor of 2, and then shift up 6 units
How to determine the sequence of transformation?
The graph that completes the question is added as an attachment
From the attached graph, we have the following points
(3, 0) and (0, 6)
Calculate the equation of the line using
[tex]g(x) = \frac{y_2 - y_1}{x_2 -x_1} * (x - x_2) + y_2[/tex]
This gives
[tex]g(x) = \frac{6 - 0}{0 -3} * (x - 0) + 6[/tex]
Evaluate the quotient
g(x) = -2 * (x) + 6
Expand
g(x) = -2x + 6
This means that the equation of the line is:
g(x) = -2x + 6
So, we have:
f(x) = x as the parent function and g(x) = -2x + 6 as the transformed function.
The transformations from f(x) to g(x) are as follows:
- Reflect over the y-axis i.e. f'(x) = -f(x) = -x
- Stretch vertically by a factor of 2 i.e. f"(x) = 2f'(x) = -2x
- Shift up by 6 units i.e. g(x) = f"(x) + 6 = -2x + 6
Hence, the sequences of transformations that could be applied to the parent function are (e) Reflect over the y-axis, vertically stretch by a factor of 2, and then shift up 6 units
Read more about transformation at:
https://brainly.com/question/13810353
#SPJ1
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.