Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
Area of given triangle is 939.15cm² and smallest altitude is 30.8cm
Solution:
We are given three sides of a triangle, Let the sides be :
- ( a ) = 35 cm
- ( b ) = 54 cm
- ( c ) = 61 cm
We can find the area of the triangle with its three sides using Heron's Formula
- Heron's Formula
Heron's formula was founded by hero of Alexandria, for finding the area of triangle in terms of the length of its sides. Heron's formula can be written as:
[tex] \sf{ \pmb { \longrightarrow \: \sqrt{s(s - a)(s - b)(s - c)} }}[/tex]
where ( s ) :
[tex] \sf \longrightarrow s = \dfrac{a + b + c}{2} [/tex]
Therefore, for the given triangle first we will calculate ( s )
[tex] \begin {aligned}\quad & \quad \longmapsto \sf s = \dfrac{a + b + c}{2} \\ & \quad \longmapsto \sf s = \dfrac{35 + 54 + 61}{2} \\ & \quad \longmapsto \sf s = \dfrac{150}{2} \\ & \quad \longmapsto \sf s = 75cm \end{aligned}[/tex]
Now, Area of triangle will be:
[tex] \begin{aligned}&:\implies \sf\quad \sf \: A = \sqrt{s(s - a)(s - b)(s - c)} \\ &:\implies \sf\quad \sf \: A = \sqrt{75(75 - 35)(75 - 54)(75 - 61)} \\&:\implies \sf\quad \sf \: A = \sqrt{75 \times 40 \times 21 \times 14} \\ &:\implies \sf\quad \sf \: A = \sqrt{5 \times 5 \times 3 \times 3 \times 2 \times 2 \times 7 \times 7 \times 2 \times 2 \times 5} \\ &:\implies \sf\quad \sf \: A =5 \times 3 \times 2 \times 7 \times 2 \sqrt{5} \\ &:\implies \sf\quad \sf \: A =420 \times 2.23 \\ &:\implies \sf\quad \sf \boxed{ \pmb{ \sf A =939.15 {cm}^{2} }} \end{aligned}[/tex]
Also, we have to find the smallest altitude, and the smallest altitude will be on the longest side. So,
[tex] \begin{aligned}&:\implies \sf\quad \sf \: Area =939.15 \\ &:\implies \sf\quad \sf \: \dfrac{1}{2} \times b \times h =939.15 \\ &:\implies \sf\quad \sf \: \dfrac{1}{2} \times 61 \times h = 939.15 \\&:\implies \sf\quad \sf \: h =939.15 \times \dfrac{2}{61} \\&:\implies \sf\quad \sf \: h = \dfrac{1818.3}{61} \\ &:\implies \sf\quad \boxed{ \pmb{\sf \: h =30.79 \: (approx)}} \end{aligned}[/tex]
Answer:
Area = 939.15 cm² (2 d.p.)
Shortest Altitude = 30.79 cm (2 d.p.)
Step-by-step explanation:
Heron's Formula allows us to find the area of a triangle in terms its side lengths.
Heron's Formula
[tex]\sf Area = \sqrt{s(s-a)(s-b)(s-c)}[/tex]
where:
- a, b and c are the side lengths of the triangle
- s is half the perimeter
Given values:
- a = 35 cm
- b = 54 cm
- c = 61 cm
Find the value of s:
[tex]\sf \implies s=\dfrac{a+b+c}{2}=\dfrac{35+54+61}{2}=75\:cm[/tex]
Substitute the values into the formula and solve for area:
[tex]\begin{aligned}\implies \sf Area & =\sf \sqrt{75(75-35)(75-54)(75-61)}\\& = \sf \sqrt{75(40)(21)(14)}\\& = \sf \sqrt{882000}\\& = \sf \sqrt{176400 \cdot 5}\\& = \sf \sqrt{176400}\sqrt{5}\\& = \sf 420\sqrt{5}\\& = \sf 939.15\:\:cm^2\:\:(2\:d.p.)\end{aligned}[/tex]
The altitude of a triangle is a perpendicular line segment drawn from a vertex of the triangle to the side opposite to it.
The shortest altitude of a triangle is drawn to the longest side.
Therefore, the shortest altitude will be the height of the triangle when the longest side is the base:
[tex]\begin{aligned}\textsf{Area of a Triangle} & = \sf \dfrac{1}{2} \times base \times height\\\implies \sf 420\sqrt{5} & = \sf \dfrac{1}{2} \times 61 \times altitude \\\implies \sf Altitude & = \sf \frac{2 \cdot 420\sqrt{5}}{61}\\& = \sf \dfrac{840\sqrt{5}}{61}\\ & = \sf 30.79\:\:cm\:\:(2\:d.p.)\end{aligned}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.