Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
First problem: max when x = 4
Second problem: min when x = 1
Step-by-step explanation:
The graph of f(x) = –|x – 4| – 5 is a translation of that of g(x) = -|x|. The vertex of the latter is (0, 0). First this must be translated 4 units to the right and then the resulting graph 5 units downward. The vertex of this translation is (4, -5). Since this graph opens downward, this (4, -5) is the maximum function value, that is, when x = 4.
The graph of f(x) = x2 – 2x + 1, or (better yet) f(x) = x^2 – 2x + 1, or
f(x) = (x - 1)^2 + 0, is that of a parabola that opens upward and has its minimum at x = 1, or (1, 0).
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.