Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using the z-distribution, as we are working with a proportion, it is found that the margin of error for the 90% confidence interval is of 0.0524 = 5.24%.
What is a confidence interval of proportions?
A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
- [tex]\pi[/tex] is the sample proportion.
- z is the critical value.
- n is the sample size.
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In this problem, the critical value is given as z = 1.645, and since 26 out of 80 students said they would be willing to pay extra:
[tex]n = 80, \pi = \frac{26}{80} = 0.325[/tex]
Then, the margin of error is of:
[tex]M = 1.645\sqrt{\frac{0.325(0.675)}{80}} = 0.0524[/tex]
More can be learned about the z-distribution at https://brainly.com/question/25890103
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.