Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

How do the two temperature curves relate to each other?

Sagot :

Answer:

Imagine that you have a block of ice that is at a temperature of -30°C, well below its melting point. The ice is in a closed container. As heat is steadily added to the ice block, the water molecules will begin to vibrate faster and faster as they absorb kinetic energy. Eventually, when the ice has warmed to 0°C, the added energy will start to break apart the hydrogen bonding that keeps the water molecules in place when it is in the solid form. As the ice melts, its temperature does not rise. All of the energy that is being put into the ice goes into the melting process and not into any increase in temperature. During the melting process, the two states – solid and liquid – are in equilibrium with one another. If the system was isolated at that point and no energy was allowed to enter or leave, the ice-water mixture at 0°C would remain. Temperature is always constant during a change of state.

Continued heating of the water after the ice has completely melted will now increase the kinetic energy of the liquid molecules and the temperature will rise. Assuming that the atmospheric pressure is standard, the temperature will rise steadily until it reaches 100°C. At this point, the added energy from the heat will cause the liquid to begin to vaporize. As with the previous state change, the temperature will remain at 100°C while the water molecules are going from the liquid to the gas or vapor state. Once all the liquid has completely boiled away, continued heating of the steam (remember the container is closed) will increase its temperature above 100°C.

Explanation:

View image Аноним

Answer:

if something is below melting point in a container, it can be cold on the outside, but warm inside

Explanation: