At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using the z-distribution, as we are working with a proportion, it is found that you should sample 577 households.
What is a confidence interval of proportions?
A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
- [tex]\pi[/tex] is the sample proportion.
- z is the critical value.
- n is the sample size.
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In this problem, we have a 95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.
In this problem, the estimate is of [tex]\pi = 0.6[/tex], and we want a margin of error of M = 0.05, hence we solve for n to find the sample size.
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.05 = 1.96\sqrt{\frac{0.6(0.4)}{n}}[/tex]
[tex]0.05\sqrt{n} = 1.96\sqrt{0.6(0.4)}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.6(0.4)}}{0.05}[/tex]
[tex](\sqrt{n})^2 = \left(\frac{1.96\sqrt{0.6(0.4)}}{0.05}\right)^2[/tex]
[tex]n = 576.24[/tex]
Rounding up, you should sample 577 households.
More can be learned about the z-distribution at https://brainly.com/question/25890103
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.