Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
a. The integral expression for the change in potential energy of the spring is ΔU = ∫kxdx
b. The change in potential energy of the spring is ΔU = k(x₂² - x₁²)/2
Since we are given the differential elastic potential energy, du, to find the integral expression, we integrate du.
a. The integral expression for the change in potential energy of the spring
The integral expression for the change in potential energy of the spring is ΔU = ∫kxdx
Since the infinitesimal elastic potential energy of the spring du = kxdx, integrating both sides of the expression, we have
ΔU = ∫du
ΔU = ∫kxdx
So, the integral expression for the change in potential energy of the spring is ΔU = ∫kxdx
b. The elastic potential energy of the spring
The change in potential energy of the spring is ΔU = k(x₂² - x₁²)/2
Performing the integration for the change in potential energy of the spring
ΔU, we have that integrating for change in length from x₁ to x₂
ΔU = ∫kxdx
ΔU = k[x²/2]₁²
ΔU = kx₂²/2 - kx₁²/2
ΔU = k(x₂² - x₁²)/2
So, the change in potential energy of the spring is ΔU = k(x₂² - x₁²)/2
Learn more about elastic potential energy here:
https://brainly.com/question/25996974
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.