Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Answer:
\sf (x+14)^2+(y+5)^2=149(x+14)2+(y+5)2=149
Step-by-step explanation:
Standard equation of a circle: \sf (x-a)^2+(y-b)^2=r^2(x−a)2+(y−b)2=r2
(where (a, b) is the center and r is the radius of the circle)
Substitute the given center (-14, -5) into the equation:
\sf \implies (x-(-14))^2+(y-(-5))^2=r^2⟹(x−(−14))2+(y−(−5))2=r2
\sf \implies (x+14)^2+(y+5)^2=r^2⟹(x+14)2+(y+5)2=r2
Now substitute the point (-7, 5) into the equation to find r²:
\sf \implies ((-7)+14)^2+(5+5)^2=r^2⟹((−7)+14)2+(5+5)2=r2
\sf \implies (7)^2+(10)^2=r^2⟹(7)2+(10)2=r2
\sf \implies 149=r^2⟹149=r2
Final equation:
\sf (x+14)^2+(y+5)^2=149(x+14)2+(y+5)2=149
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.