Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Using the t-distribution, as we have the standard deviation for the sample, we could claim that the mean weight in pounds is in the interval (79.1, 85.7).
What is a t-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- t is the critical value.
- n is the sample size.
- s is the standard deviation for the sample.
The critical value, using a t-distribution calculator, for a two-tailed 99% confidence interval, with 100 - 1 = 99 df, is t = 2.6259.
The other parameters have values given by:
[tex]\overline{x} = 82.4, s = 12.6, n = 100[/tex].
We could claim that the mean is any value in the 99% confidence interval, which has bounds given by:
[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 82.4 - 2.6259\frac{12.6}{\sqrt{100}} = 79.1[/tex]
[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 82.4 + 2.6259\frac{12.6}{\sqrt{100}} = 85.7[/tex]
More can be learned about the t-distribution at https://brainly.com/question/16162795
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.