Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Initial momentum: [tex]0\; {\rm kg \cdot m \cdot s^{-1}}[/tex].
Final momentum: [tex]150\; {\rm kg \cdot m\cdot s^{-1}}[/tex].
Force on the mass (assuming that the force is constant): [tex]75\; {\rm N}[/tex].
Impulse on the mass: [tex]150\; {\rm kg \cdot m \cdot s^{-1}}[/tex].
Explanation:
The momentum [tex]p[/tex] of an object is equal to the product of mass [tex]m[/tex] and velocity (a vector) [tex]v[/tex].
The initial momentum of this mass was [tex]0\; {\rm kg \cdot m \cdot s^{-1}}[/tex] since the velocity of this object was initially [tex]0\; {\rm m\cdot s^{-1}}[/tex].
At [tex]v = 3\; {\rm m\cdot s^{-1}}[/tex], the momentum of this mass ([tex]m = 50\; {\rm kg}[/tex]) would be:
[tex]\begin{aligned}p &= m\, v \\ &= 50\; {\rm kg} \times 3\; {\rm m\cdot s^{-1}} \\ &= 150\; {\rm kg \cdot m \cdot s^{-1}}\end{aligned}[/tex].
Assume that the external force [tex]F[/tex] on this mass is constant. By Newton's Second Law of motion, the external force on this mass would be equal to the rate of change in the momentum of this mass.
Since the momentum of this mass increased by [tex]\Delta v = 150\; {\rm kg \cdot m \cdot s^{-1}}[/tex] in [tex]\Delta t = 2\; {\rm s}[/tex], the external force on this mass would be:
[tex]\begin{aligned}F &= \frac{\Delta v}{\Delta t} \\ &= \frac{150\; {\rm kg \cdot m \cdot s^{-1}}}{2\; {\rm s}} \\ &= 75\; {\rm kg \cdot m \cdot s^{-2}} \\ &= 75\; {\rm N}\end{aligned}[/tex].
The impulse of an external force on an object is equal to the change in the momentum of that object. Since the change in momentum of this mass was [tex]\Delta v = 150\; {\rm kg \cdot m \cdot s^{-1}}[/tex], the corresponding impulse would also be [tex]150\; {\rm kg \cdot m\cdot s^{-1}}[/tex]:
[tex]\begin{aligned}J &= \Delta v \\ &= 150\; {\rm kg \cdot m\cdot s^{-1}} \\ &= 150\; {\rm N \cdot s}\end{aligned}[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.