Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A 50 kg mass is sitting on a frictionless surface. an unknown constant force pushes the mass for 2 seconds until the mass reaches a velocity of 3 m/s.
a) what is the initial momentum of the mass?
b) what is the final momentum of the mass?
c) what was the force acting on the mass?
d) what was the impulse acting on the mass?


Sagot :

Answer:

Initial momentum: [tex]0\; {\rm kg \cdot m \cdot s^{-1}}[/tex].

Final momentum: [tex]150\; {\rm kg \cdot m\cdot s^{-1}}[/tex].

Force on the mass (assuming that the force is constant): [tex]75\; {\rm N}[/tex].

Impulse on the mass: [tex]150\; {\rm kg \cdot m \cdot s^{-1}}[/tex].

Explanation:

The momentum [tex]p[/tex] of an object is equal to the product of mass [tex]m[/tex] and velocity (a vector) [tex]v[/tex].

The initial momentum of this mass was [tex]0\; {\rm kg \cdot m \cdot s^{-1}}[/tex] since the velocity of this object was initially [tex]0\; {\rm m\cdot s^{-1}}[/tex].

At [tex]v = 3\; {\rm m\cdot s^{-1}}[/tex], the momentum of this mass ([tex]m = 50\; {\rm kg}[/tex]) would be:

[tex]\begin{aligned}p &= m\, v \\ &= 50\; {\rm kg} \times 3\; {\rm m\cdot s^{-1}} \\ &= 150\; {\rm kg \cdot m \cdot s^{-1}}\end{aligned}[/tex].

Assume that the external force [tex]F[/tex] on this mass is constant. By Newton's Second Law of motion, the external force on this mass would be equal to the rate of change in the momentum of this mass.

Since the momentum of this mass increased by [tex]\Delta v = 150\; {\rm kg \cdot m \cdot s^{-1}}[/tex] in [tex]\Delta t = 2\; {\rm s}[/tex], the external force on this mass would be:

[tex]\begin{aligned}F &= \frac{\Delta v}{\Delta t} \\ &= \frac{150\; {\rm kg \cdot m \cdot s^{-1}}}{2\; {\rm s}} \\ &= 75\; {\rm kg \cdot m \cdot s^{-2}} \\ &= 75\; {\rm N}\end{aligned}[/tex].

The impulse of an external force on an object is equal to the change in the momentum of that object. Since the change in momentum of this mass was [tex]\Delta v = 150\; {\rm kg \cdot m \cdot s^{-1}}[/tex], the corresponding impulse would also be [tex]150\; {\rm kg \cdot m\cdot s^{-1}}[/tex]:

[tex]\begin{aligned}J &= \Delta v \\ &= 150\; {\rm kg \cdot m\cdot s^{-1}} \\ &= 150\; {\rm N \cdot s}\end{aligned}[/tex].

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.