Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Points are collinear if they lie on the same line.
First find the equation of the line that passes through the points B and C.
[tex]B(4, -3) \\ x_1=4 \\ y_1=-3 \\ \\ C(-4,3) \\ x_2=-4 \\ y_2=3 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{3-(-3)}{-4-4}=\frac{3+3}{-8}=\frac{6}{-8}=-\frac{3}{4} \\ \\ y=-\frac{3}{4}x+b \\ (-4,3) \\ 3=-\frac{3}{4} \times (-4)+b \\ 3=3+b \\ b=0 \\ \\ y=-\frac{3}{4}x[/tex]
The points lie on the line y=(-3/4)x.
Now plug the coordinates of the given points into the equation and check if they satisfy the equation.
[tex](0,0) \\ x=0 \\ y=0 \\ \Downarrow \\ 0 \stackrel{?}{=} -\frac{3}{4} \times 0 \\ 0 \stackrel{?}{=} 0 \\ 0=0 \\ \hbox{the point lies on the line} \\ \\ (1,1) \\ x=1 \\ y=1 \\ \Downarrow \\ 1 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ 1 \stackrel{?}{=} -\frac{3}{4} \\ 1 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line}[/tex]
[tex] (1,-5) \\ x=1 \\ y=-5 \\ \Downarrow \\ -5 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ -5 \stackrel{?}{=} -\frac{3}{4} \\ -5 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line} \\ \\ (6,-8) \\ x=6 \\ y=-8 \\ \Downarrow \\ -8 \stackrel{?}{=} -\frac{3}{4} \times 6 \\ -8 \stackrel{?}{=} -\frac{9}{2} \\ -8 \not= -\frac{9}{2} \\ \hbox{the point doesn't lie on the line}[/tex]
The answer is A.
First find the equation of the line that passes through the points B and C.
[tex]B(4, -3) \\ x_1=4 \\ y_1=-3 \\ \\ C(-4,3) \\ x_2=-4 \\ y_2=3 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{3-(-3)}{-4-4}=\frac{3+3}{-8}=\frac{6}{-8}=-\frac{3}{4} \\ \\ y=-\frac{3}{4}x+b \\ (-4,3) \\ 3=-\frac{3}{4} \times (-4)+b \\ 3=3+b \\ b=0 \\ \\ y=-\frac{3}{4}x[/tex]
The points lie on the line y=(-3/4)x.
Now plug the coordinates of the given points into the equation and check if they satisfy the equation.
[tex](0,0) \\ x=0 \\ y=0 \\ \Downarrow \\ 0 \stackrel{?}{=} -\frac{3}{4} \times 0 \\ 0 \stackrel{?}{=} 0 \\ 0=0 \\ \hbox{the point lies on the line} \\ \\ (1,1) \\ x=1 \\ y=1 \\ \Downarrow \\ 1 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ 1 \stackrel{?}{=} -\frac{3}{4} \\ 1 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line}[/tex]
[tex] (1,-5) \\ x=1 \\ y=-5 \\ \Downarrow \\ -5 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ -5 \stackrel{?}{=} -\frac{3}{4} \\ -5 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line} \\ \\ (6,-8) \\ x=6 \\ y=-8 \\ \Downarrow \\ -8 \stackrel{?}{=} -\frac{3}{4} \times 6 \\ -8 \stackrel{?}{=} -\frac{9}{2} \\ -8 \not= -\frac{9}{2} \\ \hbox{the point doesn't lie on the line}[/tex]
The answer is A.
Answer: Option 'A' is correct.
Step-by-step explanation:
Since we have given that
Coordinates of B = (4,-3)
Coordinates of C = (-4,3)
We need to find the collinear point with B and C.
There is one method to find the collinear point i.e. Slope method.
Slope of BX = Slope of CX = [tex]\dfrac{y_2-y_1}{x_2-x_1}[/tex]
Let Coordinates of X = (0,0)
So, Slope of BX is given by
[tex]\dfrac{0+3}{0-4}=\dfrac{3}{-4}[/tex]
Slope of CX is given by
[tex]\dfrac{0-3}{0+4}=\dfrac{-3}{4}[/tex]
So, Slope of BX = Slope of CX = [tex]\dfrac{-3}{4}[/tex]
And we can see from the graph (0,0) is the collinear point with B and C too.
Hence, Option 'A' is correct.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.