Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Points are collinear if they lie on the same line.
First find the equation of the line that passes through the points B and C.
[tex]B(4, -3) \\ x_1=4 \\ y_1=-3 \\ \\ C(-4,3) \\ x_2=-4 \\ y_2=3 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{3-(-3)}{-4-4}=\frac{3+3}{-8}=\frac{6}{-8}=-\frac{3}{4} \\ \\ y=-\frac{3}{4}x+b \\ (-4,3) \\ 3=-\frac{3}{4} \times (-4)+b \\ 3=3+b \\ b=0 \\ \\ y=-\frac{3}{4}x[/tex]
The points lie on the line y=(-3/4)x.
Now plug the coordinates of the given points into the equation and check if they satisfy the equation.
[tex](0,0) \\ x=0 \\ y=0 \\ \Downarrow \\ 0 \stackrel{?}{=} -\frac{3}{4} \times 0 \\ 0 \stackrel{?}{=} 0 \\ 0=0 \\ \hbox{the point lies on the line} \\ \\ (1,1) \\ x=1 \\ y=1 \\ \Downarrow \\ 1 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ 1 \stackrel{?}{=} -\frac{3}{4} \\ 1 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line}[/tex]
[tex] (1,-5) \\ x=1 \\ y=-5 \\ \Downarrow \\ -5 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ -5 \stackrel{?}{=} -\frac{3}{4} \\ -5 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line} \\ \\ (6,-8) \\ x=6 \\ y=-8 \\ \Downarrow \\ -8 \stackrel{?}{=} -\frac{3}{4} \times 6 \\ -8 \stackrel{?}{=} -\frac{9}{2} \\ -8 \not= -\frac{9}{2} \\ \hbox{the point doesn't lie on the line}[/tex]
The answer is A.
First find the equation of the line that passes through the points B and C.
[tex]B(4, -3) \\ x_1=4 \\ y_1=-3 \\ \\ C(-4,3) \\ x_2=-4 \\ y_2=3 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{3-(-3)}{-4-4}=\frac{3+3}{-8}=\frac{6}{-8}=-\frac{3}{4} \\ \\ y=-\frac{3}{4}x+b \\ (-4,3) \\ 3=-\frac{3}{4} \times (-4)+b \\ 3=3+b \\ b=0 \\ \\ y=-\frac{3}{4}x[/tex]
The points lie on the line y=(-3/4)x.
Now plug the coordinates of the given points into the equation and check if they satisfy the equation.
[tex](0,0) \\ x=0 \\ y=0 \\ \Downarrow \\ 0 \stackrel{?}{=} -\frac{3}{4} \times 0 \\ 0 \stackrel{?}{=} 0 \\ 0=0 \\ \hbox{the point lies on the line} \\ \\ (1,1) \\ x=1 \\ y=1 \\ \Downarrow \\ 1 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ 1 \stackrel{?}{=} -\frac{3}{4} \\ 1 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line}[/tex]
[tex] (1,-5) \\ x=1 \\ y=-5 \\ \Downarrow \\ -5 \stackrel{?}{=} -\frac{3}{4} \times 1 \\ -5 \stackrel{?}{=} -\frac{3}{4} \\ -5 \not= -\frac{3}{4} \\ \hbox{the point doesn't lie on the line} \\ \\ (6,-8) \\ x=6 \\ y=-8 \\ \Downarrow \\ -8 \stackrel{?}{=} -\frac{3}{4} \times 6 \\ -8 \stackrel{?}{=} -\frac{9}{2} \\ -8 \not= -\frac{9}{2} \\ \hbox{the point doesn't lie on the line}[/tex]
The answer is A.
Answer: Option 'A' is correct.
Step-by-step explanation:
Since we have given that
Coordinates of B = (4,-3)
Coordinates of C = (-4,3)
We need to find the collinear point with B and C.
There is one method to find the collinear point i.e. Slope method.
Slope of BX = Slope of CX = [tex]\dfrac{y_2-y_1}{x_2-x_1}[/tex]
Let Coordinates of X = (0,0)
So, Slope of BX is given by
[tex]\dfrac{0+3}{0-4}=\dfrac{3}{-4}[/tex]
Slope of CX is given by
[tex]\dfrac{0-3}{0+4}=\dfrac{-3}{4}[/tex]
So, Slope of BX = Slope of CX = [tex]\dfrac{-3}{4}[/tex]
And we can see from the graph (0,0) is the collinear point with B and C too.
Hence, Option 'A' is correct.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.