Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Seems to me that the situation described is impossible.
If the circle's radius is 5, then its diameter is 10. The diameter of the circle
is the farthest apart that two points on the circle can be. So points 'B' and 'C'
can not be 10.91 apart.
==========================
Oh ! But wait. I gues you mean the distance between them along the circle.
(You just said "the length of BC", which usually means the straight-line distance.)
OK.
The piece of the circumference that's 10.91 long is (10.91/5) radiuses long.
So the central angle that encloses it is (10.91/5) = 2.182 radians.
Answer:
m∠BOC=2.182 radians
Step-by-step explanation:
It is given that Points B and C lie on a circle with center O and radius r = 5 units, length of BC=10.91 units, then using the formula,
[tex]S=r{\theta}[/tex] where S is the arc length, r is the radius and [tex]{\theta}[/tex] is in radians, thus
on substituting the values of S, r, we get
⇒[tex]10.91=(5){\theta}[/tex]
⇒[tex]{\theta}=\frac{10.91}{5}[/tex]
⇒[tex]{\theta}=2.182 radians[/tex]
Thus, m∠BOC=2.182 radians
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.