Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Chord of Contact:-
- The chord joining the points of contact of two tangents drawn from an external point to a parabola is known as the chord of contact of tangents drawn from external point.
Equation of the normal chord at any point (at², 2at) of the parabola y² = 4ax is
y + tx = 2at + at³ ....(i)
Look at the attached figure
But if M (x₁, y₁) be it's middle point its equation must be also,
T = S₁
:⟹ yy₁ - 2a (x + x₁) = y₁² - 4ax₁
:⟹ yy₁ - 2ax = y₁² - 2ax₁ .....(ii)
Therefore, from eqs. (i) and (ii) are identical, comparing, them
[tex] \sf \frac{1}{y_1} = \frac{t}{ - 2a} = \frac{2at + {at}^{3} }{ {y_1}^{2} - 2ax} \\ \\ \sf \: from \: first \: two \: relations \: ,t = - \frac{2a}{y_1} ....(iii)\\ \\ \sf \: from \: first \: two \: relations \: , \: \frac{t}{ - 2a} = \frac{2at + {at}^{3} }{{y_1}^{2} - 2ax_1} [/tex]
[tex] \implies \sf \: \frac{{y_1}^{2} - 2ax_1}{ - 2a} = 2a + {at}^{2} \: \\ \\ \implies \sf \: \frac{{y_1}^{2} - 2ax_1}{ - 2a} = 2a + a \bigg \lgroup \frac{ - 2a}{y_1} { \bigg \rgroup}^{2} \qquad\{ \: from \: eqs. \: (iii) \} \\ \\ \implies \sf \:\frac{{y_1}^{2} - 2ax_1}{ - 2a} = \frac{2a{y_1}^{2} + 4 {a}^{3} }{{y_1}^{2}} \\ \\ \implies \sf \: {y_1}^{4} - 2ax_1 {y_1}^{2} = - 4 {a}^{2} {y_1}^{2} - 8 {a}^{4} \\ \\ \implies \sf \: {y_1}^{4} - 2a(x_1 - 2a){y_1}^{2} + 8 {a}^{4} = 0[/tex]
[tex] \sf hence, \: the \: locus \: of \: middle \: point \: (x_1,y_1) \: is \: \\ \\ \qquad \qquad \: \sf \: {y_1}^{4} - 2a(x_1 - 2a){y_1}^{2} + 8 {a}^{4} = 0[/tex]

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.