Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Chord of Contact:-
- The chord joining the points of contact of two tangents drawn from an external point to a parabola is known as the chord of contact of tangents drawn from external point.
Equation of the normal chord at any point (at², 2at) of the parabola y² = 4ax is
y + tx = 2at + at³ ....(i)
Look at the attached figure
But if M (x₁, y₁) be it's middle point its equation must be also,
T = S₁
:⟹ yy₁ - 2a (x + x₁) = y₁² - 4ax₁
:⟹ yy₁ - 2ax = y₁² - 2ax₁ .....(ii)
Therefore, from eqs. (i) and (ii) are identical, comparing, them
[tex] \sf \frac{1}{y_1} = \frac{t}{ - 2a} = \frac{2at + {at}^{3} }{ {y_1}^{2} - 2ax} \\ \\ \sf \: from \: first \: two \: relations \: ,t = - \frac{2a}{y_1} ....(iii)\\ \\ \sf \: from \: first \: two \: relations \: , \: \frac{t}{ - 2a} = \frac{2at + {at}^{3} }{{y_1}^{2} - 2ax_1} [/tex]
[tex] \implies \sf \: \frac{{y_1}^{2} - 2ax_1}{ - 2a} = 2a + {at}^{2} \: \\ \\ \implies \sf \: \frac{{y_1}^{2} - 2ax_1}{ - 2a} = 2a + a \bigg \lgroup \frac{ - 2a}{y_1} { \bigg \rgroup}^{2} \qquad\{ \: from \: eqs. \: (iii) \} \\ \\ \implies \sf \:\frac{{y_1}^{2} - 2ax_1}{ - 2a} = \frac{2a{y_1}^{2} + 4 {a}^{3} }{{y_1}^{2}} \\ \\ \implies \sf \: {y_1}^{4} - 2ax_1 {y_1}^{2} = - 4 {a}^{2} {y_1}^{2} - 8 {a}^{4} \\ \\ \implies \sf \: {y_1}^{4} - 2a(x_1 - 2a){y_1}^{2} + 8 {a}^{4} = 0[/tex]
[tex] \sf hence, \: the \: locus \: of \: middle \: point \: (x_1,y_1) \: is \: \\ \\ \qquad \qquad \: \sf \: {y_1}^{4} - 2a(x_1 - 2a){y_1}^{2} + 8 {a}^{4} = 0[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.