Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The equation of the tangent line is given by the following equation:
[tex]\displaystyle y - \frac{1}{e} = \frac{-1}{e} \bigg( x - 1 \bigg)[/tex]
General Formulas and Concepts:
Algebra I
Point-Slope Form: y - y₁ = m(x - x₁)
- x₁ - x coordinate
- y₁ - y coordinate
- m - slope
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
[tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
*Note:
Recall that the definition of the derivative is the slope of the tangent line.
Step 1: Define
Identify given.
[tex]\displaystylef(x) = e^{-x} \\x = -1[/tex]
Step 2: Differentiate
- [Function] Apply Exponential Differentiation [Derivative Rule - Chain Rule]:
[tex]\displaystyle f'(x) = e^{-x}(-x)'[/tex] - [Derivative] Rewrite [Derivative Rule - Multiplied Constant]:
[tex]\displaystyle f'(x) = -e^{-x}(x)'[/tex] - [Derivative] Apply Derivative Rule [Derivative Rule - Basic Power Rule]:
[tex]\displaystyle f'(x) = -e^{-x}[/tex]
Step 3: Find Tangent Slope
- [Derivative] Substitute in x = 1:
[tex]\displaystyle f'(1) = -e^{-1}[/tex] - Rewrite:
[tex]\displaystyle f'(1) = \frac{-1}{e}[/tex]
∴ the slope of the tangent line is equal to [tex]\displaystyle \frac{-1}{e}[/tex].
Step 4: Find Equation
- [Function] Substitute in x = 1:
[tex]\displaystyle f(1) = e^{-1}[/tex] - Rewrite:
[tex]\displaystyle f(1) = \frac{1}{e}[/tex]
∴ our point is equal to [tex]\displaystyle \bigg( 1, \frac{1}{e} \bigg)[/tex].
Substituting in our variables we found into the point-slope form general equation, we get our final answer of:
[tex]\displaystyle \boxed{ y - \frac{1}{e} = \frac{-1}{e} \bigg( x - 1 \bigg) }[/tex]
∴ we have our final answer.
---
Learn more about derivatives: https://brainly.com/question/27163229
Learn more about calculus: https://brainly.com/question/23558817
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.