Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

" Laurent Series "

Expand:
[tex] f(z) = \frac{ {e}^{ {z}^{2} } }{ {z}^{3} } [/tex]


Sagot :

Recall that for all [tex]z\in\Bbb C[/tex],

[tex]\displaystyle e^z = \sum_{n=0}^\infty \frac{z^n}{n!}[/tex]

Then

[tex]\displaystyle \frac{e^{z^2}}{z^3} = \frac1{z^3} \sum_{n=0}^\infty \frac{z^{2n}}{n!} = \boxed{\sum_{n=0}^\infty \frac{z^{2n-3}}{n!}}[/tex]